
Space optimal and asymptotically move optimal
Arbitrary Pattern Formation on rectangular grid

by asynchronous robot swarm?

Avisek Sharma1[0000−0001−8940−392X], Satakshi Ghosh1[0000−0003−1747−4037],
Pritam Goswami1[0000−0002−0546−3894], and Buddhadeb

Sau1[0000−0001−7008−6135]

Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata 700032, India
{aviseks.math.rs,satakshighosh.math.rs,pritamgoswami.math.rs,

buddhadeb.sau}@jadavpuruniversity.in

Abstract. Arbitrary pattern formation (Apf) is a well-studied problem
in swarm robotics. The problem has been considered in two different set-
tings so far; one is in a plane and another is in an infinite grid. This work
deals with the problem in an infinite rectangular grid setting. The previ-
ous works in literature dealing with Apf problem in infinite grid had a
fundamental issue. These deterministic algorithms use a lot of space in
the grid to solve the problem mainly because of maintaining the asymme-
try of the configuration or to avoid a collision. These solution techniques
can not be useful if there is a space constraint in the application field.
In this work, we consider luminous robots (with one light that can take
two colors) to avoid symmetry, but we carefully designed a deterministic
algorithm that solves the Apf problem using minimal required space in
the grid. The robots are autonomous, identical, and anonymous and they
operate in Look-Compute-Move cycles under a fully asynchronous sched-
uler. The Apf algorithm proposed in [WALCOM’2019] by Bose et al. can
be modified using luminous robots so that it uses minimal space but that
algorithm is not move-optimal. The algorithm proposed in this paper not
only uses minimal space but also asymptotically move-optimal. The al-
gorithm proposed in this work is designed for an infinite rectangular grid
but it can be easily modified to work in a finite grid as well.

Keywords: Distributed computing · Arbitrary pattern formation · Rect-
angular grid · Robot with lights ·

1 Introduction

Swarm robotics in the field of a distributed system is well studied in the past
two decades. Replacing a huge expensive robot with a set of simple, inexpensive
robots is the goal of this field. This makes the system cost-effective, robust, and

? Supported by Jadavpur University

ar
X

iv
:2

21
2.

02
87

6v
2

 [
cs

.D
C

]
 8

 D
ec

 2
02

2

2 A Sharma, S Ghosh, P Goswami and B Sau

easily scalable. The robot swarm is usually modeled as a collection of compu-
tational entities, called robots, which can move. These robots operate in Look-
Compute-Move (LCM) cycles. In the Look phase, a robot takes a snapshot of
its surroundings as input. This input consists of the positions of other robots
concerning its local coordinate system. In the Compute phase, the robot runs
an inbuilt algorithm to determine a position to move. In the Move phase, the
robot moves to that position. The main research interest has been to investi-
gate what minimal capabilities are needed for these robots to solve a problem.
The robots are assumed to be anonymous (robots have no unique identifiers),
autonomous (there is no central control), homogeneous (all robots execute the
same distributed algorithm), identical (the robots are indistinguishable from ap-
pearance), disoriented (the robots does not have access to a global coordinate).
The robots can be oblivious, i.e., the robots do not have any memory to remem-
ber their past actions or past configuration. Each robot can be equipped with
finite memory, where it can remember a finite bit. In literature, this model is
termed as FST A. Each robot can be able to communicate a finite bit of in-
formation to other robots. In literature, this model is termed as FCOM. The
finite bit memory and finite communicable information are together interpreted
as a finite number of lights that can take a finite number of different colors. A
robot with lights means the robot can access the color of the lights and it can
communicate it to other robots. This model is termed as LUMI and the robots
are called luminous robots. Based on the timing to activation of the robots and
execution time of the phases of the LCM cycles there are three types of sched-
ulers in the literature. In the fully synchronous (FSync) scheduler, all robots
operate in synchronous rounds. The time is divided into rounds. All robots si-
multaneously get activated and simultaneously execute the phases of the LCM
cycle. In a semi-synchronous (SSync) scheduler, a nonempty set of robots gets
activated in a round and simultaneously executes the phases of the LCM cycle.
Next, in the fully asynchronous (ASync) scheduler, there is no common notion
of time among the robots. All robots get activated and execute its LCM cycle
independently.

The Arbitrary Pattern Formation (Apf) problem is one of the well-studied
problems in the literature. This problem asks the robots to form a pattern that
is given as input. the input is given as a set of points expressed in cartesian
coordinates concerning a coordinate system. The goal of this problem is to de-
sign a distributed algorithm that allows a set of autonomous robots to form a
specific but arbitrary geometric pattern given as input. This problem has been
studied in both the euclidean plane and grid setting. In this paper, the problem
is considered on an infinite rectangular grid for luminous robots in a fully asyn-
chronous scheduler. The earlier solutions for this problem in grid settings did
consider the space required for the solution. Infinite grid setting has theoretical
motivation but practically one cannot have such luxury. For a space-constrained
application field, we need an algorithm that uses lesser space. This will help
to utilize the given space as optimally as possible. This somewhat guarantees
lesser total robot movement as well. Motivated by this, this work proposes an

Title Suppressed Due to Excessive Length 3

algorithm that solves Apf problem in an infinite grid for asynchronous luminous
robots. The proposed algorithm is space optimal and also asymptotically moves
optimally. In the next section, we discuss the related works and contributions of
this work.

2 Related work and our contribution

Related work The arbitrary pattern formation problem has been investigated
mainly in two settings, the first one in a euclidean plane and another one in a
grid. In euclidean plane the problem is studied in [3,4,5,7,8,9,16,17]. In a grid
setting, this problem is first studied in [2]. Here, the authors solved the prob-
lem in a rectangular grid by oblivious robots in ASync. Later in [6], authors
studied the problem on a regular tessellation graph. Whereas the algorithm pro-
posed in [2,6] is not move optimal, so in [10] authors provided two algorithms
solving the problem in an asynchronous scheduler. The first algorithm solves
the Apf problem for oblivious robots keeping the total robot move asymptot-
ically optimal. The second algorithm solves the problem for luminous robots
and this algorithm is asymptotically move-optimal and time-optimal. Then in
[11], the authors proposed two randomized algorithms solving the Apf problem
in an asynchronous scheduler. The first algorithm works for oblivious robots.
This algorithm is asymptotically move-optimal and time-optimal. The second
algorithm works for luminous robots with obstructed visibility (when robots are
not transparent). This algorithm is also move-optimal and time-optimal. In all
the mentioned works for arbitrary pattern formation problems, firstly finding
a solution was a challenge. Then the works tilted toward finding optimal solu-
tions considering different aspects. So far, the considered aspects were the total
number of moves made by the robots and the total time to solve the problem.
None of the work mentioned or discussed the space complexity of the solution. In
[12], the author considered spatial complexity but they showed their solution is
asymptotically space optimal. However, in the mutual visibility problem studied
in [1,15] asymptotic space complexity has been considered.

Comparison with related works For the arbitrary pattern formation problem, in a
rectangular grid, we define the space complexity of an algorithm as the minimum
area of the rectangles (sides of which are parallel with the grid lines) such that
no robot steps out of the rectangle throughout the execution of the algorithm.
The work proposed in this paper is not only asymptotically space optimal (as in
[12]), it is exactly space optimal. Let the smallest enclosing rectangle (SER), the
side of which are parallel to grid lines, of the initial configuration and pattern
configuration formed by the robots respectively be m× n (m ≥ n) and m′ × n′
(m′ ≥ n′), then minimum space required for an algorithm to solve the problem is
a rectangle of dimension M ×N , where M = max{m,m′} and N = max{n, n′}.
The deterministic algorithm proposed in this paper has space complexity M×N ,
if M 6= N and has space complexity (M + 1) × N , if M = N . The robots in
this work only use one light that can take three different colors. Although, the

4 A Sharma, S Ghosh, P Goswami and B Sau

algorithm proposed in [2] can be modified such that it takes equal space as the
algorithm of this work using luminous robots. But the proposed algorithm in [2]
is not move-optimal. The algorithms proposed in [10] need the robots to form a
compact line. The space complexity of these algorithms is M2×N2 in the worst
case. To the best of our knowledge, the work that is most closely related to
our work is [11]. The first randomized algorithm, proposed in [11] for luminous
non-transparent robots, tends to use lesser space than all other existing works at
this time. But this work did not discuss its space complexity. On investigating
this work, authors find that this algorithm uses at least uses (M + 2)× (N + 2)
space to execute the algorithm. This algorithm also did not count the number
of lights and colors required for the robots. The second randomized algorithm
for oblivious robots in [11] has space complexity 10M × 10N . Further, APF
algorithms proposed in [14,13] solved it for obstructed visibility. These works
also need to form a compact line, hence failing to be space optimal.

Our contribution This work gives first time a deterministic algorithm for solving
APF in an infinite rectangular grid, which is space optimal as well as asymptot-
ically move-optimal. Precisely, the space complexity for the algorithm is M ×N
when M 6= N and (M + 1) ×N when M = N . And, if D = max{M,N}, then
each robot requires to make O(D) moves. However, the algorithm can be easily
modified to work for a finite grid that has enough space to contain both the
initial and target configuration. The robots are asynchronous, luminous having
one light that can take three different colors.

3 Model and problem statement

The robots are equipped with technology that a robot can determine other po-
sitions of other robots for a local coordinate system (chosen by the robot). The
robots are on an infinite rectangular grid graph embedded in a plane. A robot
chooses the local coordinate system such that the axes are parallel to the grid
lines and the origin is its current position. Note that, robots do not agree on a
global coordinate system. We consider that a robot can determine the position of
all other robots present in the system for its local coordinate system irrespective
of their position on the grid.

The robots are silent, i.e., they don’t have any explicit way to communi-
cate with each other. On activation, a robot executes a cycle, called the Look-
Compute-Phase (LCM) cycle, which consists of three phases. In the Look phase,
a robot takes a snapshot of its surroundings and gets the position and states of
the robots which the robot communicates through implicit means. In Compute
phase the robots run an inbuilt algorithm taking the information got in the Look
phase and obtaining a state and position. The position can be its position or
any of its adjacent grid nodes. In the Move phase, the robot changes its state
as decided in Compute phase and either stay still or moves to the adjacent grid
node as determined in Compute phase. The robots work asynchronously. There
is no common notion of time for robots. Each robot independently gets activated

Title Suppressed Due to Excessive Length 5

and executes its LCM cycle. In this scheduler Compute phase and Move phase of
robots take a significant amount of time. The time length of LCM cycles, Com-
pute phases and Move Phases of robots may be different. Even the time length
of two LCM cycles of one robot may be different. The gap between two consec-
utive LCM cycles or the time length of an LCM cycle of a robot is finite but
can be unpredictably long. We consider the activation time and the time taken
to complete an LCM cycle as determined by an adversary. In a fair adversarial
scheduler, a robot gets activated infinitely often.

The robots are anonymous and indistinguishable from their appearance,
which means, they don’t have any unique identifier. All robots are autonomous,
that is, they are not controlled by a central machine and run an inbuilt algorithm.
The robots are homogeneous, which means, they all run the same distributed
algorithm. Each robot has finite memory which is readable for other robots as
well. The finite memory is interpreted as a finite number of lights that can take a
finite number of colors. A robot can see another robot’s lights and their present
color.

Let G be an infinite rectangular grid graph embedded on R2. G can be for-
mally defined as a geometric graph embedded on a plane as P × P, which is
the cartesian product of two infinite (from both end) path graphs P. Suppose
a set of robots is placed on G. Let f be a function from the set of vertices of
G to N ∪ {0}, where f(v) is the number of robots on the vertex v of G. Let g
be a function from the set of edges of G to N ∪ {0}, where g(e) is the number
of robots on the edge e of G. Then the pair (G, f, g) is called a configuration
of robots on G. We assume for the initial configuration (G, f), f(v) = 0 or 1
for all node v in G and g(e) = 0 for all edge e. Further, we assume the initial
configuration to be asymmetric (See Subsection 3.2 of [2] for the definition of
asymmetric configuration).

Problem Statement Suppose a swarm of robots is placed in an infinite rectangle
grid such that no two robots are on the same grid node and the configuration
formed by the robots is asymmetric. The Arbitrary Pattern Formation (Apf)
problem asks to design a distributed algorithm following which the robots au-
tonomously can form any arbitrary but specific pattern, which is provided to
the robots as an input, without scaling it or colliding with another robot.

4 The proposed algorithm

This section gives the proposed algorithm ApfMinSpace. We assumed that
the initial configuration formed by the robots is asymmetric and all robot’s
lights have light color OFF. First, we describe a procedure named Procedure I,
which can be executed by a robot if the configuration made by the robot is still
asymmetric.

Procedure I:
Assumption: Configuration formed by the robots is still an asymmetric
Let C be the current configuration. Compute the smallest enclosing rectangle

6 A Sharma, S Ghosh, P Goswami and B Sau

(SER) containing all the robots where the sides of the rectangle are parallel to
the grid lines. LetR = ABCD be the SER of the configuration, a m×n rectangle
with |AB| = n ≥ m = |AD|. The length of the sides of R is considered as the
number of grid points on that side. If all the robots are on a grid line then R is
just a line segment. In this case, R is considered as 1×n ‘rectangle’ with A = D,
B = C and AD = BC = 1. Let n > m > 1, that is, R is a nonsquare rectangle.
For each corner point A, B, C and D the robot calculates a binary string. For
the corner point A, the binary string is determined as follows. Scan the grid from
A along the longer side AB to B and sequentially all grid lines parallel to AB
in the same direction. For each grid point, put a 0 or 1 according to whether
it is empty or occupied by a robot. We denote the string as λAB . Similarly,
the robot calculates other three strings λBA, λCD and λDC . If R is a square,
that is, m = n, then we have to associate two strings to each corner. Then we
have eight binary strings λAB , λBA, λAD, λDA, λBC , λCB , λDC and λDC . Since
the configuration is asymmetric, so all the strings are distinct. the robot finds
out the unique lexicographically largest string. Let λAB be the lexicographically
largest string, then A is considered as the leading corner of the configuration.

The leading corner is taken as the origin and
−−→
AB is as the x axis and

−−→
AD is as

the y axis. If the R is a 1×n rectangle then there are only two associated binary
strings λAB and λBA. If both are equal then the configuration is symmetric.
Since the configuration is asymmetric so the strings are distinct. Let λAB be the

lexicographically largest string. Then A is considered as the origin and
−−→
AB is

considered as the x axis. In this case, there is no common agreement of the Y
axis. In all the cases, there is a unique string, say λAB . The robot responsible for
the first 1 in this string is considered as head robot of C and the robot responsible
for the last 1 is considered as tail of C. The robot other than the head and tail
is termed as inner robot.

Next, we discuss how robots are supposed to embed the target pattern when
they agree on a global coordinate system. Let the R′ = A′B′C ′D′ be the SER of
the target pattern, an m′ × n′ rectangle with |A′B′| ≥ |B′C ′| > 1. We associate
binary strings similarly for R′. Let λA′B′ be the lexicographically largest (may
not be unique) among all other strings for R′. The first target position on this
string λA′B′ is said to be head target and the last target position is said to be tail

target. Then the target pattern is to be formed such that A′ is the origin,
−−−→
A′B′

direction is along the positive x axis and
−−−→
A′D′ direction is along the positive

y axis. Let the SER of the target pattern is a line A′B′ and let λA′B′ be a
lexicographically largest string between λA′B′ and λB′A′ . Then the target is

embedded in such a way that A′ is at the origin and
−−−→
A′B′ direction is along the

positive x axis.

Definition of head and tail robot Let formally state the definition of head and
tail robot. Earlier in the Procedure, we defined the head and tail robot once. If
there is no robot with TAIL color on, the configuration is still asymmetric, then
that definition is applicable. If there is a robot with light color HEAD and there
is another robot with a light color TAIL, then the robot with the HEAD color

Title Suppressed Due to Excessive Length 7

on is said to be the head robot, and the robot with the TAIL color on is said to
be a tail robot.

Next list some set of conditions in Table 1 below. Before that state defi-
nitions. Let C′ = C \ {head} and C′′ = C \ {head, tail} , where C is the cur-
rent configuration. Let C′target = Ctarget \ {head target}, C′′target = Ctarget \
{head target, tail target} where Ctarget is the target configuration. Let the di-
mension of the SER of the current configuration be m× n with m ≤ n and the
dimension of the SER of the target configuration be m′ × n′ with m′ ≤ n′. If
m ≥ m′ and n ≥ n′, then the current SER can contain the target pattern.

C0 C = Ctarget

C1 C′ = C′
target

C2 C′′ = C′′
target

C3 Light color of each robot is OFF

C4 Light color of the head robot is HEAD and the light color
of the rest robots is OFF

C5 There is a robot with light color HEAD and there is a
robot with light color TAIL

C6 The tail robot is at a corner point if the SER

C7 The current SER can contain the target pattern

C8 The current SER is a nonsquare rectangle
Table 1. List of conditions

Let’s formally describe the algorithm. There are three different phases. Phase I
runs when C3 is true for the current configuration, phase II runs when C4 is true
for the current configuration and phase III runs when C5 is true for the current
configuration. Next, we discuss the details of the phases one by one.

Phase I
Condition: C3 is true.
In this phase, if in the visible configuration in the snapshot a robot is seen on

an edge then discard the snapshot and go to sleep. If the current configuration
is symmetric, then terminate. Else if the configuration is asymmetric, then run
Procedure I and determine the global coordinate system. If C0 is true, then
terminate. If ¬C0 ∧C1 is true, then the head robot goes to the left (right) if the
head target is it’s left (right). If ¬C0∧¬C1 is true, then the head robot moves to
the left until it reaches the origin. If the head robot is at its origin then change
the color of its light to HEAD.

Output: (C3 ∧ C0) ∨ (C4 ∧ ¬C1) is true.

Phase II
Condition: C4 is true.
If C0 is true then the head robot turns its light color to OFF. If C0 is not true

and the configuration is asymmetric then run Procedure I. If C1 is true then the

8 A Sharma, S Ghosh, P Goswami and B Sau

head robot turns its light color OFF. Else, find the tail robot to turn its light
color as TAIL.

Output: (C3 ∧ (C0 ∨ C1)) ∨ (C5 ∧ ¬C1) is true.
Next, first we describe another procedure, Procedure II before describing

phase III.
Procedure II:

Assumption: C5 is true.
Let SER of the configuration be a rectangle ABCD with |AB| ≥ |BC| and head
robot situated at A.
Case-I: Let ABCD be a nonsquare rectangle or, ABCD be a square and the tail

robot is on the CD edge but not at C. Then consider A as origin,
−−→
AB as x axis

and
−−→
AD as y axis.

Case-II: If ABCD is a square rectangle and the tail robot is at C, then consider
A as the origin and there are two possibilities of consideration of axes. Firstly,

it can be done by considering
−−→
AB as x axis and

−−→
AD as y axis. Secondly, it can

be done by considering
−−→
AD as x axis and

−−→
AB as y axis.

Let the SER of the configuration be a line AB and the head robot situated
as A. Then the tail robot is situated at B. Then consider A as the origin and−−→
AB as x axis. The y axis can be considered in either way out of the two possible
ways.

Phase III
Condition: C5 is true.
In this phase, if in the snapshot, the tail robot is seen on the edge then discard

the snapshot and go to sleep. Execute Procedure II. If considering the coordinate
system through case I or any of the coordinate systems through case II C2 is
true, then the tail moves towards the tail target and upon reaching the tail
target turns its light color to OFF. Else if C2 is not true considering any of the
coordinate systems through Procedure II, if C6 is false then the tail robot moves
right. If ¬C2∧C6 is true then there are two possibilities; either C7 is true or not.
If C7 is not true then the tail robot expands the SER to fit the target pattern.
If ¬C2 ∧ C6 ∧ C7 is true but C8 is false, then the tail robot moves outside the
SER. Finally, when ¬C2 ∧C6 ∧C7 ∧C8 is true, then call function Rearrange().

Function Rearrange()
Input: ¬C2 ∧ C6 ∧ C7 ∧ C8 is true.
Let’s name the grid lines parallel to x axis (we shall call them horizontal grid
lines) H1, H2, . . . , from down to top. Let the horizontal line containing the head
is H1. Let a′(i) (b′(i)) is the total number of target positions in C′target above
(below) Hi horizontal line. Let a(i) (b(i)) is the total number of robots in Ctarget
above (below) Hi horizontal line. We say a horizontal line Hi satisfies upward
condition if:

(U1) a′(i) > a(i),
(U2) [a′(i+ 1) > a(i+ 1) and Hi+1 is empty] or [a′(i+ 1) = a(i+ 1)].

Title Suppressed Due to Excessive Length 9

Then we say a horizontal line Hi satisfies downward condition if:

(D1) b′(i) > b(i),
(D2) [Hi−1 is empty] or [b′(i− 1) ≤ b(i− 1)].

Suppose a horizontal lineHi satisfies the upward condition but not the downward
condition. If there is a robot in between Hi and Hi+1 then no robot on Hi does
anything. Let there be no robot in between Hi and Hi+1. If Hi+1 is empty
then the leftmost robot on Hi goes upward. If Hi+1 is nonempty and there is
a robot on Hi which has its upward node empty then the leftmost such robot
goes upward. If there are no such robots that have no upward node empty, then
consider the leftmost empty node v on Hi+1 in the SER. Then consider the
closest robot on Hi to v node. If there are two such robots then the left one
moves to v.

Suppose a horizontal line Hi satisfies the downward condition. If there is a
robot in between Hi and Hi−1 then no robot on Hi does anything. Let there be
no robot in between Hi and Hi−1. If Hi−1 is empty then the rightmost robot
on Hi goes downward. If Hi−1 is nonempty and there is a robot on Hi which
has its downward node empty then the rightmost such robot goes downward. If
there are no such robots that have no downward node empty, then consider the
rightmost empty node v on Hi−1 in the SER. Then consider the closest robot
on Hi to v node. If there are two such robots then the left one moves to v.

A horizontal line Hi is said to be saturated if a(i) = a′(i) and b(i) = b′(i).
Suppose a robot, r on a saturated horizontal line, say Hi. If r is the jth robot
from left on Hi, then consider the jth target position at a node, say u, on the Hi

from the left. If the u node is at the left (right) of r and the left (right) neighbor
node of r is empty then move left (right).

Aim of Rearrange: C2 ∧ C5 is true.
Output: C1 ∧ C4

For better understanding phase III is illustrated in the flowchart depicted in
Figure 1. Next, the flow of the algorithm is given in the flowchart depicted in
Figure 2. In the next section, we prove the correctness of the proposed algorithm.
The target of the algorithm is to achieve C0 ∧ C3.

5 Correctness of the proposed algorithm

We start by proving the correctness of the three phases.

Correctness of Phase I
The algorithm enters in phase I when C3 is true. There are two sub-cases either
C1 is true or not. If in the initial configuration, C1 is not true then the head robot
moves left until it reaches the leading corner. Let the SER of the configuration
be ABCD at some time such that λAB is the lexicographically largest string.
If the head moves left then the λnewAB is lexicographically larger than λAB and
also than the other considered strings. Therefore, the new configuration is still
asymmetric and the coordinate system remains unchanged. Thus after a finite

10 A Sharma, S Ghosh, P Goswami and B Sau

tail moves

tail expands

tail moves

tail moves to

tail target and

canges its color

to OFF

to right

the SER

outside the SER

Fig. 1. Illustration of Phase III

number of moves to the left head reaches its origin and turns its HEAD color
on. This makes ¬C1 ∧C4 true. If in the initial configuration C1 is true. If in the
initial configuration C0 is not true then the configuration must be asymmetric.
Then the head robot can be identified through Procedure I. In such a case head
approaches to head target. Since at the beginning of this phase head is at the
origin so either the head target is at the origin or it is at the right of the head.
If C0 is not true, the head target is at the left of the head. Let at some time t
head at a position h and it moves left. If after this move head reaches the head
target then C0 ∧C3 becomes true. Otherwise, we show after this move we show
that the configuration remains asymmetric and the coordinate system remains
unchanged. Suppose at this time the SER of the current configuration is ABCD
then as directed in the algorithm the SER of the embedded target pattern should
be also ABCD with λAB as a lexicographically largest string and position of the
head target is the first 1 in λAB . Until the head reaches head target, it remains at
the left of the head target. So the current configuration remains asymmetric and
the λAB string for the current configuration remains lexicographically largest.
Therefore, after finite time head reaches at head target making C0∧C3 true. We
conclude the above discussion in the following Lemma 1.

Lemma 1. After finite time execution of phase I, (C3∧C0)∨(C4∧¬C1) becomes
true.

Correctness of Phase II
In this phase, no robots are directed to move. The correctness of this phase is
basic. We conclude it in the following Lemma 2.

Lemma 2. After finite time execution of phase II, (C3∧(C0∨C1))∨(C5∧¬C1)
becomes true.

Title Suppressed Due to Excessive Length 11

Phase I

Phase I

Phase II

Phase III

Phase II

Phase I

Asymmetric

Configuration

Asymmetric

Configuration*

Symmetric

Configuration**

Asymmetric

Configuration

Phase II

Fig. 2. Flow Chart of the Algorithm
*Here in Phase I, only the head robot moves left to reach the origin which does not
create symmetry in the configuration
**C1 is true when the head robot is at the origin (from C4) and the configuration is
symmetric, this implies the head target is at the origin, which makes C0 true.

Correctness of Phase III
In this phase, the head robot is at a corner with its HEAD color on, and the
tail robot is on an edge with a TAIL color on. First, we proof the correctness
of the Rearrange function. Condition of this function is C5 ∧ C6 ∧ C7 ∧ C8.
Since only inner robots are moving in this function, C7 remains true if only
inner robots move. Next in this function, no inner robot is allowed step out of
the SER formed by the head and tail robot, so C6 and C8 also remain true.
So coordinate system decided through Procedure II also remains unchanged
throughout. Now once a horizontal line becomes saturated then after a finite
time all robots on that line take their respective target position by horizontal
moves. So it is sufficient to show that, every horizontal line becomes saturated
after a finite time. Therefore, we get the liberty to throw away the case when
the initial and target configuration both have the SER, a line, because in that

12 A Sharma, S Ghosh, P Goswami and B Sau

case there is only one horizontal line which is saturated vacuously according to
the definition.

Let there be some nonsaturated horizontal lines in the configuration at some
time. Let us consider two consecutive saturated horizontal lines, Hi and Hj such
that |i − j| 6= 1. If there is no saturated horizontal line or only one saturated
horizontal line, then consider this scenario in the following way. Let the SER of
the configuration ABCD where head and tail are respectively situated at A and
C. Then consider the horizontal line below the AB and the horizontal line above
CD. We can consider these two lines as vacuous saturated lines. The scheme
of the proof is, we show that after a finite time, another saturated horizontal
line will create between the lines Hi and Hj . Without loss of generality, let
i > j. Note that, there have to be at least two horizontal lines between Hi and
Hj . Consider the horizontal line Hi−1. Note that, Hi−1 cannot satisfy upward
condition because a′(i−1) = a(i−1). According to the assumption, Hi−1 is not a
saturated horizontal line. So we must have b′(i−1) > b(i−1) or b′(i−1) < b(i−1).

Case I: (b′(i − 1) > b(i − 1)) Let starting from Hi−1 and going downwards
Hk is the last horizontal line such that b′(k) > b(k) and k > j + 1. Then
b′(k − 1) ≤ b(k − 1) and b′(p) > b(p) for all p = i− 1, i− 2, . . . , k. The existence
of such a horizontal line is guaranteed because b′(j+ 1) = b(j+ 1). Consider the
horizontal line Hk. Then Hk satisfies the downward condition. If Hk is nonempty
then a robot will come down. Hk horizontal line will keep satisfying downward
condition until b′(k) = b(k) becomes true. Suppose Hk is empty, then consider
the first nonempty horizontal line Hm above Hk. Then Hm satisfies the down-
ward condition. Then a robot comes down from Hm. That robot comes down
to Hk making Hk nonempty. Hence after finite time b′(k) = b(k) becomes true.
Now if at this time b′(k + 1) = b(k + 1) then Hk is saturated and our task is
done. Since only robots were coming down through Hk+1 in this time interval,
therefore Hk+1 was satisfying (D1) so the difference b′(k + 1) − b(k + 1) can
minimum reach to zero. So we have only remaining possibility at this time, that
is, b′(k+ 1) > b(k+ 1). Suppose b′(k+ 1) > b(k+ 1), then now Hk+1 satisfies the
downward condition. And similarly, after finite time b′(k+1) = b(k+1) becomes
true and which implies Hk is saturated.

Case II: (b′(i−1) < b(i−1)) For this case we have a′(i−2) > a(i−2) and we
have a′(i−1) = a(i−1). Hence Hi−2 satisfies the upward condition. If Hi−2 also
satisfies the downward condition then Hi−2 must be nonempty then after finite
sometime required robot(s) will go down from Hi−2, making it no longer satisfy
the downward condition. We assume Hi−2 satisfies the upward condition but
not the downward condition. If Hi−2 is nonempty then a robot goes upward and
reaches Hi−1. The Hi−2 will keep satisfying the upward condition and the robot
will keep coming up from Hi−2 until Hi−2 is empty or a′(i − 2) = a(i − 2). If
a′(i−2) = a(i−2) turns true then Hi−1 becomes saturated. If a′(i−2) > a(i−2)
is true and Hi−2 is empty. Then consider the first nonempty horizontal line
Hm below Hi−1. Note that such a nonempty line must exist. Consider Hi−3
horizontal line. We have a′(i − 2) > a(i − 2) is true and Hi−2 is empty. This
forces to satisfy a′(i − 3) > a(i − 3). So, Hi−3 satisfies the upward condition.

Title Suppressed Due to Excessive Length 13

Similarly, we can show that all horizontal lines Hi−2, . . . ,Hm satisfy the upward
condition. Since Hm satisfies the upward condition, a robot comes upward from
Hm. And that robot reaches Hi−2 making Hi−2 non empty. Hence after finite
time Hi−1 becomes saturated.

The rest four types of executions by the tail robot are quite basic. Hence we
conclude it in the following Lemma 3.

Lemma 3. After finite time execution of phase III, C4 ∧ C1 becomes true.

Next, we prove the correctness of the proposed algorithm. The goal of our
algorithm is to make a configuration where C3 ∧ C0 is true. If the initial con-
figuration doesn’t match with the target configuration then ¬C0 ∧ C3 is true.
The flow chart depicted in Figure 2 shows that any directed path starting from
¬C0 ∧ C3 ends at C0 ∧ C3 passing through the phases finite times. Hence the
correctness follows.

Theorem 1. The algorithm ApfMinSpace solves the APF problem within fi-
nite time.

6 Space complexity of the proposed algorithm

In this section, we calculate the maximum space required for the robots to ex-
ecute the algorithm ApfMinSpace. In Phase, I head maximum reaches the
leading corner of the current SER, which gives the head robot never step out of
the current SER. The inner robot only moves in Rearrange function where also
they are not allowed to step out of the current SER. Now the tail robot only
steps out of the current SER if it has to expand the SER to contain the target
pattern. Hence if the SER of the initial configuration can contain the target pat-
tern then no robot steps out of the SER of the current configuration. Otherwise,
the tail expands the SER exactly to fit the target pattern. Hence, the robots only
move inside a rectangle with minimum dimensions which contains both initial
and target configuration. Precisely, if m× n (m ≥ n) and m′ × n′ (m′ ≥ n′) are
the dimensions of the SER of the initial configuration and target configuration
respectively, then the robots only move inside a rectangle of dimension M ×N
where M = max{m,m′} and N = max{n, n′}. Further, if M = N then the tail
moves one step away from the current SER to make the SER non square in phase
III. Hence we record the maximum required space in the following Theorem 2.

Theorem 2. If m × n (m ≥ n) and m′ × n′ (m′ ≥ n′) are the dimensions
of the SER of the initial configuration and target configuration respectively. Let
M = max{m,m′} and N = max{n, n′}. Then throughout the execution of algo-
rithm ApfMinSpace, the robots are only required to move inside a rectangle of
dimension M ×N or (M + 1)×N in accordance with M > N or M = N .

14 A Sharma, S Ghosh, P Goswami and B Sau

7 Move complexity of the proposed algorithm

In this section, we show that the each robot makes O(D) moves throughout the
algorithm, where D is the dimension of minimum square which can contain both
initial and target configuration. Which will show that the proposed algorithm is
asymptotically move optimal. First, we consider the movements of the head and
tail robots. The head robot only moves through the x axis and its maximum
locus is from initial position to origin and then origin to head target. Hence,
head maximum makes 2D moves. The tail robot might change its horizontal line
but only for once then it moves to tail target. Therefore, tail makes at most 2D
moves. Next, let r be an inner robot initially belonged to the horizontal line Hi.
If Hi is saturated then r makes maximum D moves to settle down.

Suppose Hi is not saturated initially. Before that we draw an observation.
If for a horizontal line Hi, a

′(i) ≤ a(i) (b′(i) ≤ b(i)), then no robot ever goes
upward (downward) from Hi. If a′(i) ≤ a(i) is true then it implies and implied by
b′(i+1) ≥ b(i+1). If a′(i) = a(i) then it implies and implied by b′(i+1) = b(i+1).
So at this condition neither Hi satisfies upward condition nor Hi+1 satisfies
downward condition. So, there will be no exchange of robots in between this
two horizontal lines. Suppose a′(i) < a(i). Then this implies and implied by
b′(i+ 1) > b(i+ 1). Then eventually leads to satisfy the downward condition for
Hi+1. Let l = b′(i + 1) − b(i + 1), then from the proposed algorithm a unique
robot fixed robot on Hi+1 robot comes down from Hi+1 to make the difference
b′(i + 1) − b(i + 1) = l − 1. If l − 1 > 0, there is another fixed unique robot
which comes down from Hi+1 making the difference l− 2. Hence, eventually the
difference b′(i + 1) − b(i + 1) becomes zero. After this no exchange of robots
between the horizontal lines Hi and Hi+1 takes place. Thus, if a′(i) ≤ a(i) is
true, then no robot ever goes upward from Hi. Similarly, one can show that, if
for a horizontal line Hi, b

′(i) ≤ b(i), then no robot ever goes downward from Hi.
Thus, if a′(i) ≤ a(i) and b′(i) ≤ b(i), r never leaves the Hi. Eventually Hi

gets saturated, so in this case also r makes at most D moves. Otherwise, after
some time either it satisfies upward condition or downward condition or both.
In this case also either r never leaves the horizontal line or r goes upward or
downward. Suppose r goes upward, then at that time a′(i) > a(i) and either
Hi+1 is empty or a′(i+ 1) = a(i+ 1). First we show that if a′(i+ 1) = a(i+ 1)
is true then r never leaves Hi+1 after reaching there. If a′(i+ 1) = a(i+ 1), then
from previous discussion no robot ever goes up from Hi+1. After r moves upward
if a′(i) = a(i) becomes true then Hi+1 is saturated. Otherwise, if a′(i) > a(i)
remains true, then b′(i+ 1) < b(i+ 1) then Hi+1 does not satisfy the downward
condition. Hence Hi+1 does not satisfy either upward or downward condition.
So then r does not leave the Hi+1 after that.

Next, suppose Hi+1 is empty and a′(i+1) > a(i+1). If r moves upward then
it just makes one vertical movement to reach Hi+1. Similarly, if after reaching
a′(i) = a(i) becomes true then Hi+1 becomes saturated. Hence we conclude if r
goes upward from Hi under the condition a′(i + 1) = a(i + 1) then it r settles
down at a target position on Hi+1. And if r goes upward from Hi under the
condition that Hi+1 is empty then it just makes a vertical movement to reach

Title Suppressed Due to Excessive Length 15

Hi+1. A similar conclusion can be made similarly if r starts moving downwards
in the first place.

Next, we show that throughout the execution of the algorithm if r starts
moving upward then it never comes down after that, and also, if it starts moving
downwards initially then it never goes upward after that. On the contrary, let
the opposite happens. Then without loss of generality, there exists i such that r
goes upward from Hi to Hi+1 and then after some time again comes down. r goes
upward implies a′(i) > a(i) and any other robot can go upward after that only if
a′(i) > a(i) remains true. After a robot goes upward we must have a′(i) ≥ a(i).
That implies b′(i+ 1) ≤ b(i+ 1), but with this Hi+1 can never satisfy downward
condition. So no robot can come downwards from Hi+1. Summarising all if a
robot r starts initially going upward its locus would be a vertical movement in
a straight line until reaches a horizontal line Hi where a′(i) = a(i), this takes
at most D moves. Then r maximum makes D moves on the Hi horizontal line
before moving to hi+1. Then r moves upward on Hi+1 and settles down at a
target node on Hi+1, which also takes at most D moves. Hence r all total makes
3D moves. Similarly, one can show if r starts moving downwards initially then
also r all total makes 3D moves.

Theorem 3. The algorithm ApfMinSpace requires each robot to make O(D)
moves.

8 Conclusion

This work provides an algorithm for solving arbitrary pattern formation prob-
lems by robot swarm. The robots are considered autonomous, anonymous, and
identical. The proposed algorithm works for asynchronous robots with one light
that can take three different colors. The algorithm uses minimal space to solve
the Apf problem (Theorem 2). Further, the algorithm is asymptotically move-
optimal (Theorem 3). Even though the proposed algorithm is considered over
an infinite rectangular grid, the algorithm can be easily modified to work in a
finite rectangular grid (This part can be seen in a detailed version of the work).

This work does not investigate (due to space constrain) whether the algorithm
is asymptotically time optimal or not. If the proposed algorithm is not time op-
timal then it would be interesting to find whether there exists an algorithm that
is asymptotically move-optimal, time-optimal, and also space optimal. Further,
in the proposed algorithm, for a case when M = N , the algorithm required the
space (M + 1)×N . The authors do not know whether this can be improved to
M ×N . Fixing this issue does not contribute a lot but it is under process. Even
though the proposed algorithm is asymptotically move-optimal but the authors
believe that the total required move is better than existing move optimal Apf
algorithms (shall be investigated in a detailed version).

16 A Sharma, S Ghosh, P Goswami and B Sau

References

1. Adhikary, R., Bose, K., Kundu, M.K., Sau, B.: Mutual visibility on grid by asyn-
chronous luminous robots. Theoretical Computer Science 922, 218–247 (2022),
https://www.sciencedirect.com/science/article/pii/S0304397522002481

2. Bose, K., Adhikary, R., Kundu, M.K., Sau, B.: Arbitrary pattern formation on
infinite grid by asynchronous oblivious robots. Theoretical Computer Science
815, 213–227 (2020), https://www.sciencedirect.com/science/article/pii/

S0304397520301006
3. Bose, K., Das, A., Sau, B.: Pattern formation by robots with inaccurate move-

ments. In: Bramas, Q., Gramoli, V., Milani, A. (eds.) 25th International Conference
on Principles of Distributed Systems, OPODIS 2021, December 13-15, 2021, Stras-
bourg, France. LIPIcs, vol. 217, pp. 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021), https://doi.org/10.4230/LIPIcs.OPODIS.2021.10

4. Bramas, Q., Tixeuil, S.: Probabilistic asynchronous arbitrary pattern formation
(short paper). In: Bonakdarpour, B., Petit, F. (eds.) Stabilization, Safety, and
Security of Distributed Systems - 18th International Symposium, SSS 2016, Lyon,
France, November 7-10, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 10083, pp. 88–93 (2016), https://doi.org/10.1007/978-3-319-49259-9_7

5. Bramas, Q., Tixeuil, S.: Arbitrary pattern formation with four robots. In: Izumi,
T., Kuznetsov, P. (eds.) Stabilization, Safety, and Security of Distributed Systems
- 20th International Symposium, SSS 2018, Tokyo, Japan, November 4-7, 2018,
Proceedings. Lecture Notes in Computer Science, vol. 11201, pp. 333–348. Springer
(2018), https://doi.org/10.1007/978-3-030-03232-6_22

6. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: Arbitrary pattern formation
on infinite regular tessellation graphs. In: International Conference on Distributed
Computing and Networking 2021. p. 56–65. ICDCN ’21, Association for Comput-
ing Machinery, New York, NY, USA (2021), https://doi.org/10.1145/3427796.
3427833

7. Cicerone, S., Stefano, G.D., Navarra, A.: Embedded pattern formation by asyn-
chronous robots without chirality. Distributed Comput. 32(4), 291–315 (2019),
https://doi.org/10.1007/s00446-018-0333-7

8. Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern for-
mation problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) Distributed Computing,
24th International Symposium, DISC 2010, Cambridge, MA, USA, September 13-
15, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6343, pp. 267–281.
Springer (2010), https://doi.org/10.1007/978-3-642-15763-9_26

9. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3), 412–
447 (2008), https://doi.org/10.1016/j.tcs.2008.07.026

10. Ghosh, S., Goswami, P., Sharma, A., Sau, B.: Move optimal and time optimal
arbitrary pattern formations by asynchronous robots on infinite grid. International
Journal of Parallel, Emergent and Distributed Systems 0(0), 1–23 (2022), https:
//doi.org/10.1080/17445760.2022.2124411

11. Hector, R., Sharma, G., Vaidyanathan, R., Trahan, J.L.: Optimal arbitrary pattern
formation on a grid by asynchronous autonomous robots. In: 2022 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). pp. 1151–1161
(2022). https://doi.org/10.1109/IPDPS53621.2022.00115

12. Hector, R.A.: ”practical considerations and applications for autonomous
robot swarms”. (2022). LSU Doctoral Dissertations.5809. (2022).
https://doi.org/10.31390/gradschool dissertations.5809

https://www.sciencedirect.com/science/article/pii/S0304397522002481
https://www.sciencedirect.com/science/article/pii/S0304397520301006
https://www.sciencedirect.com/science/article/pii/S0304397520301006
https://doi.org/10.4230/LIPIcs.OPODIS.2021.10
https://doi.org/10.1007/978-3-319-49259-9_7
https://doi.org/10.1007/978-3-030-03232-6_22
https://doi.org/10.1145/3427796.3427833
https://doi.org/10.1145/3427796.3427833
https://doi.org/10.1007/s00446-018-0333-7
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1080/17445760.2022.2124411
https://doi.org/10.1080/17445760.2022.2124411
https://doi.org/10.1109/IPDPS53621.2022.00115
https://doi.org/10.31390/gradschool_dissertations.5809

Title Suppressed Due to Excessive Length 17

13. Kundu, M.K., Goswami, P., Ghosh, S., Sau, B.: Arbitrary pattern formation
by asynchronous opaque robots on infinite grid (2022), https://arxiv.org/abs/
2205.03053

14. Kundu, M.K., Goswami, P., Ghosh, S., Sau, B.: Arbitrary pattern formation
by opaque fat robots on infinite grid. International Journal of Parallel, Emer-
gent and Distributed Systems 37(5), 542–570 (2022), https://doi.org/10.1080/
17445760.2022.2088750

15. Sharma, G., Vaidyanathan, R., Trahan, J.L.: Optimal randomized complete visi-
bility on a grid for asynchronous robots with lights. In: 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp. 607–
616 (2020). https://doi.org/10.1109/IPDPSW50202.2020.00103

16. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots - formation and
agreement problems. In: Problems, in the Proceedings of the 3rd International Col-
loquium on Structural Information and Communication Complexity (SIROCCO
’96. pp. 1347–1363 (1996)

17. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by
oblivious anonymous mobile robots. Theoretical Computer Science 411(26),
2433–2453 (2010), https://www.sciencedirect.com/science/article/pii/

S0304397510000745

https://arxiv.org/abs/2205.03053
https://arxiv.org/abs/2205.03053
https://doi.org/10.1080/17445760.2022.2088750
https://doi.org/10.1080/17445760.2022.2088750
https://doi.org/10.1109/IPDPSW50202.2020.00103
https://www.sciencedirect.com/science/article/pii/S0304397510000745
https://www.sciencedirect.com/science/article/pii/S0304397510000745

	Space optimal and asymptotically move optimal Arbitrary Pattern Formation on rectangular grid by asynchronous robot swarm

